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We shall examine the unsteady temperature distribution in a two-
layer semi-space, at point (X,,yp) of which a concentrated, impulsive
heat source is located, the boundary being thermally insulated.

The problem in question reduces to the system of equations
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the solution of which must satisfy the initial condition
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as well as the following requirements at the medium interface:

Ty

x=0' ! dx

2

aT.
=hq ——
T ox

4)

x=0 =0

To obtain an exact solution of this problem, it is convenient to
apply the method of integral transforms (a Laplace transformation with
respect to the variable t, and a cosine and sine Fourier transformation
with respect to the coordinates y and x, respectively). After some
operations, the general solution of the problem may be obtained in
the following form:
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where
;‘,f:xﬂ_;_a,-p, Re3; >0 (i=1, 2. )

without carrying out the extensive calculations to carry the solu-
tion to simple quadratures, we shall turn to the particular case, when
there is a source at the coordinate origin, and find the temperature
variation law at the medium interface,

Putting x = Xg = yg = 0 in (5) and (6), and carrying out the ap-
propriate transformations, we obtain
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and the notation
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For y= 1 (k = k; = k) formula (8) has the form
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whence, for a homogeneous medium with parameters k, and ¢&y(y=
= y=1), the well-known formula

T =

2’
exp(—“—;;i) (12)

is obtained.
Simple intuitive results describing the thermal process examined
may be obtained by comparing the values of Ty and Tp. We shall
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Fig. 1. Graphs of reduced medium interface temperature with a) y= 0.5 and
b) 2, and the parameter v equal to 1) 0,125; 2) 0.25; 3) 0.5;4)1;5)2:6)4;
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introduce the function ¥(n) to describe their ratios
V) =TyTg 1=v'ay2y (18)
Examination shows that when n= 0
w(0) = 2/(1+7), (14)

i.e., it is independent of v, and when 7 —> « the behavior of ¥(n) is
determined by the asymptotic expression
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Thus, for a given value of the parameter y and various values of
the parameter v, the function ¥(n) changes from the same value 2/(1 +
+ ¥), but when n —> « it behaves in a substantially different way,
depending on the values of the parameter v; namely, when v > 1it
grows without bound, while when v < 1 it tends to zero (when v=1
¥(n) = ¥(03). '

The figure presents graphs of the function ¥(n), drawn on the basis

403

of calculations according to formulas(8)~(13) carried out on a " Minsk-2"
electronic computer,

NOTATION

T-—temperature; t—~time; x, y—rectangular coordinates; Q—volume
density of heat source; c~reciprocal of thermal diffusivity; k-thermal
conductivity; §—delta function,
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